Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering
نویسندگان
چکیده
The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V2/3Zr1/3)2AlC and (Mo2/3Y1/3)2AlC. Predictive theory and verifying materials synthesis, including a judicious choice of alloying M from groups III to VI and periods 4 and 5, indicate a potentially large family of thermodynamically stable phases, with Kagomé-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y. We propose the structure to be monoclinic C2/c. As an extension of the work, we suggest a matching set of novel MXenes, from selective etching of the A-element. The demonstrated structural design on simultaneous two-dimensional (2D) and 3D atomic levels expands the property tuning potential of functional materials.
منابع مشابه
Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering
The exploration of two-dimensional solids is an active area of materials discovery. Research in this area has given us structures spanning graphene to dichalcogenides, and more recently 2D transition metal carbides (MXenes). One of the challenges now is to master ordering within the atomic sheets. Herein, we present a top-down, high-yield, facile route for the controlled introduction of ordered...
متن کاملPrediction of Structural Changes in Gas Hydrate for Methane and Ethane Mixture by Using Tangent Plane Distance Minimization
Abstract: Â In this study, the change in the crystalline structure of gas hydrate was predicted for ternary mixture of methane-ethane-water. For this purpose, the tangent plane distance (TPD) minimization method was used. First, the calculations were performed for the binary mixtures of methane-water and ethane-water as the gas and liquid phases. The results show that for a binary mixture of th...
متن کاملSynthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique
In this study, hydroxyapatite (HA) nanocrystals have been synthesized via chemical precipitation technique. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials and sodium hydroxide solution was used as the agent for pH adjustment. The powder sample was evaluated by techniques such as scanning electron microscope, transmission electron microscope, Fou...
متن کاملHydrothermal Synthesis of Aligned Hydroxyapatite Nanorods with Ultra-High Crystallinity
Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH3(CH2)15N+(CH3)3Br-) was designated as CTAP)/Ca(NO3)2/(NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystalHAp nanorods with diameter of 20 ±...
متن کاملStructural Characterization and Ordering Transformation of Mechanically Alloyed Nanocrystalline Fe-28Al Powder
The synthesis of nanocrystalline Fe3Al powder by mechanical alloying as well as the structural ordering of the synthesized Fe3Al particles during the subsequent thermal analysis were investigated. Mechanical alloying was performed up to 100 hours using a planetary ball mill apparatus with rotational speed of 300 rpm under argon atmosphere at ambient temperature. The synthesized powders were cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2017